AN ASYMPTOTIC EXPRESSION FOR THE
CRITICAL-REGION "BIRD'SBEAK" ISOTHERM
AND ADJACENT ISOTHERMS ON THE
VAPOR-LIQUID PHASE DIAGRAM OF A SIMPLE
BINARY MIXTURE*

James C. Rainwater
Physical and Chemical Properties Division
National Institute of Standards and Technology
325 Broadway
Boulder, CO 80303

*Contribution of the National Institute of Standards and Technology; not subject to copyright in
the United States.



ABSTRACT

For a binary mixture of a dilute nonvolatile solute in a volatile solvent, an asymptotic
expression is derived for isothermal dew-bubble curvesin the region just above the solvent critica
point. The expression depends only on the solvent coexistence properties and the initial slopes of
the continuous critical locus, with no adjustable parameters. It clarifies the mathematical behavior
of these curves and shows why, for this situation, classical critical exponents can be used with
relatively small error. For supercritical extraction applications, the expression does not apply to
solutes with large, complex molecules, since the critical locus with carbon dioxide is usually
discontinuous, but it should apply to carbon dioxide + cosolvent mixtures. The formulaisin good
guantitative agreement with experiment for three simple nonpolar mixtures and for carbon dioxide

+ acetone, but shows only qualitative agreement for carbon dioxide + ethanol.
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. INTRODUCTION

Thermodynamic behavior and phase equilibria of fluids and fluid mixtures in the
near-critical region are characterized by critical exponents, which differ in value from classical
exponentsthat result from standard equations of state[1]. For purposes of accurate thermodynamic
correlations, usually the most important critical exponentisf. If T isthetemperature of coexisting
liquid and vapor states of a pure fluid with densities p, and p, respectively, then:

o =P, ) /o = R2C [(T-T) /TP =20 (-tf (1)

where the subscript ¢ denotes critical valueand C, isaconstant. Classically 3 = 0.5, but according
to the modern theory of critical phenomena, B = 0.325 within the region very near the critical point.
For some purposes[2], an "effective" value of B = 0.355 makes Eq. (1) auseful (but approximate)
fitting function over awider range, typicaly -0.1 <t <O0.

At present, eveninthecritical region, vapor-liquid equilibriaof mixturesare most frequently
modeled by classical equations of state, including commonly used cubic equations such as the
Redlich-Kwong [3] and Peng-Robinson [4] equations. Some nonclassical models with theoretical
or effective critical exponents are available, such as the Leung-Griffiths model [5] as modified by
Rainwater and Moldover [2, 6] and related models that incorporate crossover functions to connect
thecritical and noncritical regions[7-11]. Such modelsare currently used in acorrelative rather than
a predictive mode, since in general they require the critical locus as input as well as a number of
adjustable parameters that can be determined only when extensive experimental data are available.
Also to date, they have been used only in alimited degree for multicomponent mixtures [12-14],
caloric properties [9,15], and mixtures with discontinuous critical loci [16], subjects which are
generally easily studied by means of classical equations of state. A question that then arisesis how
much error is caused by the use of an equation that leads to (incorrect) classical critical exponents.
The answer, of course, depends on the thermophysical property that is being studied. One genera
observation is that proper exponents appear to be more important for densities than for the
pressure-temperature-composition phase boundary.

For the P-T-x-y phase boundary surface without regard to densities, the problems with



classical equations of state are less evident. Commonly used phase equilibrium algorithms can fail
to converge in the critical region, but thisis a deficiency of the algorithm rather than the equation
of stateitself. For isothermsjust above the critical temperature of the more volatile component, as
seen in the numerous Peng-Robinson correlations of Knapp et. a. [17], and elsewhere, the classical
equation of state frequently appears to agree well with experimental data all the way to the critical
point. One conclusion of the present work isthat it isthis type of diagram, and this region of that
diagram, in which the errorsintroduced by classical critical exponents are not of great importance,
in contrast to other diagrams and regions of the P-T-x-y diagram.

Our primary result is a simple asymptotic formula for isothermal dew-bubble curves at
temperaturesjust above the critical temperature of the volatile component, and which thus describe
adilute nonvolatile solute in avolatile solvent. We depart from traditional practice only inthat the
mixture critical locus is considered input rather than output. However, from the coexistence
properties of the solvent and the initial slopes of the mixture critical locus, the isothermal
dew-bubble curves are predicted without any further adjustable parameters. The present result thus
does not suffer from the need to correlate many parameters that has been experienced with the
modified Leung-Griffiths model.

1. ASYMPTOTIC FORMULA FOR DEW-BUBBLE CURVES

Our starting point isthe modified Leung-Griffiths model [2,6] which hasyielded successful
critical-region vapor-liquid equilibrium correlations for a wide variety of mixtures. On the
coexistence surface, the independent variables of the model are ¢ and t, where:

'/ (Ke“? T '”') @)

and t is defined by Eq. (1) with a ¢-dependent T, of the mixture [2]. Here | is the chemical
potential of fluid i, wherei=1 for the nonvolatile solute and i=2 for the volatile solvent. Also, Ris
the gas constant and K is a temperature-dependent parameter that allows us, for monotonic T (),
to impose the condition ¢ = x, on the critical locus [18].

We consider the small region of the phase diagram that describes a near-critical dilute
nonvolatile solute in a volatile solvent. Over alimited regime, the vapor pressure curve of the



solvent (solidline of Fig. 1) isapproximately linear, with constant slope (dP/dT),,, and terminates
at the solvent critical point C. The mixture critical locus CAD is assumed to be linear over this
regimein Pvs. x; and T vs. X, (and thereforein Pvs. T ), so dP, /dx, and dT /dx, are constants.
Our objective is to describe the isotherm AB, where A isacritical point of the mixture. Here BD
is a locus of constant ¢, also linear over a limited regime, and according to the modified
Leung-Griffiths model [2, 6], it is parallel to the vapor pressure curve, so (dP/ dT), = (dP/dT),.

The validity of these assumptions depends on the mixture in question. The solvent vapor
pressure curve may be expanded in powers of t:

P/T = P(:/Tc[l + C‘3<7t>l,9 + Clt + CSt“f + } (3)

so that beyond the linear term there are contributions of order (-t)*° and t* with coefficients that can
be fairly large. However, those two terms are nearly equal and opposite and largely cancel each
other for small t. Therefore, vapor pressure curves of most pure fluids are very close to linear over
therange 0.8 P,<P<P..

Critical loci can assume many different shapes, and for some mixtures such as sulfur
hexafluoride + propane [19] or benzene + methanol or 1-propanol [20], there is an abrupt hook at
the critical point of the volatile fluid, so the present analysis does not apply. Theinitia part of the
critical locusismorelikely to be linear if the fluids are somewhat dissimilar. For example, critical
loci for carbon dioxide + propane or n-butane have curvature and extrema aong their initial
intervals [21], but mixtures of carbon dioxide with alkanes from n-pentane to n-decane show
sizeable linear intervals, although the critical locus becomes discontinuous at tridecane [22].

Elsewhere we have shown [23] that, along a line of constant C,

X = 02 G Jan | (<UF - O(-)° P (4)

where the plus refersto liquid and minus to vapor, C, is defined by Eq. (1), and



a, = limp (x-x) /(0,-p,) )

where «, isameasure of dew-bubble curve width. We have also shown that, in the dilute regime,

dP. dp dT,
As— 15| ¢ (6)
dx, dT), . dx
a, = (RP<::3 T(:‘-z)il AX, (7)

where A is the Krichevskii parameter [24] that has been shown to govern much of dilute
critical-region thermodynamics [25]. A has dimensions of pressure, and in the case of Fig. 1, is

negative.

We choose T asthe temperature of the isotherm AB with critical composition x(T) at point
A, and Ax,, asthe difference in x,, between points A and D, and treat both quantities as small. If
P,and T, are the pressure and temperature at point J ( A,B or D), then:
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We then use Eqg. (4) along line DB with the assumption that C, (¢) is approximately C, for
the pure solvent, and ¢ = x,, (T) + Ax,. Therefore, at point B, an arbitrary point on the isotherm
of interest, and where A P and A are both negative,

B

dr.
ab T

AT dx,

Xiy = X (1) + A_AP+ Cp (RP. T )7I [|A\ch <T>‘AP]

Equation (10) is our central result and isfirst used in Fig. 2. Severa important observations can
now be made:

1) Atthe"bird'sbeak" isotherm T =T, the critical temperature of the solvent, x,. (T) = 0.
Thus on a P-x plot such as Fig. 2, both the dew and bubble curves have initial slope A, a result
shown earlier by Levelt Sengers[26]. The difference Ax, = X,, - X,, is proportional to (-AP)**! as
noted by Harvey and Levelt Sengers[27]. Higher order termswould appear in EQ. (10), in addition
to the terms explicitly omitted in our derivation, from a crossover theory. However, a simple
scaling theory with an effective 3 = 0.355 has been shown to describe experiment over afairly large
range, so in considering the differences between a classical and ascaling law model, wewill usethe
classical and effective exponents. Whether 3 = 0.5 or 3 = 0.355, the bubble curve on the bird's beak
isotherm isinitially convex upward and the dew curve concave upward, and the isotherm has an
infinitely sharp point at the solvent critical point. For T<T,, theinitial slopesof the bubble and dew
curves differ according to a similar formula related to Henry's Law due to Japas and
Levelt Sengers[28]:

In[(9p /9x),, /(@0 /ax ), ] = 2A (o, — ) / RI'ps (12)

where B and D denote bubble and dew curves and p,, is the solvent saturated liquid density, at
temperature T.

2) Since there are terms in Eqg. (10) proportional to (-AP)’ and (-AP)**!, an earlier
conclusion of Harvey and Levelt Sengers [27] is affirmed and made more precise. For fixed
positivex,, (T), at very small values of |AP| the term with the f exponent dominates. However, the
coefficient of thisterm is proportional to x,. (T), which in thisregime isitself small, so thereisa
competition between the two terms. Also, rectilinear diameters of the dew-bubble curves are



straight lines of slope A.

3) Since nonclassical thermodynamic models are not yet as well developed for general
purposes as classical equations of state, such classical equationsare still commonly used eveninthe
critical region. It isthusimportant to understand how significant the numerical errorswill be from
use of improper critical exponents. Such a question of course depends on the situation of interest,
but Eq. (10) showsthat, inthe case of critical phase equilibrium of adilute solution with nonvolatile
solute, one can largely get away with the use of classical exponent values. There is not much
difference between behavior governed initially by an exponent of 0.5 with transition to an exponent
of 1.5, as compared with behavior governed initially by an exponent of 0.355 with transition to an
exponent of 1.355.

The DECHEMA volume on vapor-liquid equilibrium [17] shows many examples of
Peng-Robinson [4] correlations that are fairly good in the corner of the diagram that represents a
dilute nonvolatile solute. The situation is quite different on the other side of the phase diagram for
adilute volatile fluid in a nonvolatile solvent and "pure-f3 behavior”". There, the DECHEMA fits
show many examplesof convergencefailuresand deviation with experiment near critical conditions.

4) One of the problems with the modified Leung-Griffiths model is the proliferation of
adjustable parameters. Equation (10), however, is a compact representation that depends only on
solvent coexistence properties and the slopes of the critical line, without any free parameters.

5) Finally, we wish to comment on what we believeis amisunderstanding in the literature.

For any temperature such that T, < T < T, and consequently for a finite nonzero x,. (T), there

is a term proportional to (-AP)* in Eq. (10), and thus at the critical point of the dew-bubble
isotherm,

(P/ox), "7 =0 (12)

However, Eq. (12) doesnot hold exactly at T =T_,. For thisbird's beak isotherm, the first
term in brackets of EQ. (10) is zero, and the dew-bubble curve comesto an infinitely sharp point of
slope A at the critical point of the solvent. Wichterle et al. [29], we believe incorrectly, asserted
that Eq. (12) holds for the bird's beak isotherm also. Probably influenced by this analysis, Stryjek



et a. [30] of the same laboratory plotted the bird's beak isotherm for the nitrogen + methane
mixture, in a closeup inset to their Fig. 6, as having a sharp hook so that the curves are horizontal
at the critical point. There isinsufficient data to support this conclusion, and in agreement with
Levelt Sengers [26], we believe that conclusion to be incorrect. In other words, the bird's beak
isothermis like the beak of an egret, not like the beak of anibis.

[11. SIMPLE NONPOLAR MIXTURES

To test our result, we first examine some simple mixtures of nonpolar fluids. We seek
mixtures with a number of isothermal dew-bubble curves at temperatures just above the critical
temperature of the volatile component, and with acritical locuswith anearly linear initial segment.
Kobayashi and co-workers have presented such experimental studies for methane + ethane [31],
nitrogen + methane [30], and methane + propane [32]. These mixtures have also been correlated
with the modified Leung-Griffiths model, so a comparison between that model, Eq. (10), and
experiment can be made.

Figure 2 shows the comparison for methane + ethane. For each isotherm the solid lineis
Eqg. (10), and the dotted lineisthe modified L eung-Griffithsmodel [2]. Except for minor parameter
adjustments, thisis equivalent to thefit of methane + ethane by Smith and Lynch [14]. The model
was optimized to the constant-composition VLE data of Bloomer et al.[33].

Equation (10) and the full model are in agreement in the near-critical region, but diverge
somewhat away from the critical locus. Both agree well with experimental data where they
coincide, and Eq. (10) could be made to agree better with experiment by small shiftsin the critical
locus. That locus was optimized to the entire phase diagram, so a refitting of the initial linear
segment of the critical locus could lead to improved agreement in Fig. 2, although there may also
be small systematic discrepanciesin the experimentally stated temperatures [26].

Thederivation of Eq. (10) isaleading-order analysis of an expansionint and x, and neglects
many effects. Among these are the curvature of the solvent vapor pressure curve and loci of
constant ¢, the curvature of the critical locus, the variation of critical density with composition, and
other factors which are not understood fundamentally but are accounted for by adjustable
parameters. Also, at pointsin the derivation higher powers of x, are neglected. However, for the
supercritical region, here defined as the region above the critical pressure and temperature of
nitrogen, and for temperatures at |east up to the temperature at which x; = 0.05 on the critical locus



aswell as at dightly lower pressures, Eq. (10) appears to be accurate.

The comparison for nitrogen + methane is shown in Figure 3. Except for the problem with
the bird's beak isotherm noted earlier, the data of Stryjek, et a. [30] appear to be reliable. The
Leung-Giriffiths correlation of this mixture was presented earlier by Rainwater and Moldover [34]
as an optimization to the data of Bloomer and Parent [35]. The overall pattern issimilar to that of
methane + ethane. Similar agreement is found on comparing to dilute solutions of propane in
methane [32].

IV: CARBON DIOXIDE + COSOLVENT MIXTURES

In this section, we consider possible applications of Eg. 10 to problems in supercritical
extraction. We first note that our equation is probably not applicable to the complex products
usually extracted with pure supercritical carbon dioxide. Thereasonisthat, asaseparation process,
supercritical extraction is advantageous only for solutes of very large molecules, and thus of
substancesthat have avery high critical temperature (and probably decompose at that temperature).
In general, mixtures of such substances with carbon dioxide do not have continuous critical loci.
Our result may have somevalidity for discontinuouscritical loci, but only over avery limited range.

We know approximately the conditions such that mixtures of a solute with carbon dioxide
do not display discontinuous critical loci, from various studies of Lam and co-workers[21, 36]. For
example, for the carbon dioxide + n-alkane family [21] that locus becomes discontinuous at
tridecane (Tc = 676 K) and for the carbon dioxide + n-alkanol family [36], the discontinuity occurs
at n-hexanol (Tc = 611 K). Critical temperature ratio is the most important (but not the only)
determiner of whether a binary mixture critical locus is continuous, so we can presume carbon
dioxide usually does not form mixtures of continuous critical loci with substances such that
Tc > 600 K, and of molecules larger than those we have cited.

However, our expression was at first expected to be applicable to the thermodynamics of
carbon dioxide + cosolvent mixtures used in supercritical extraction. Often apolar cosolvent, also
called amodifier or entrainer, is used to enhance the solvation power or selectivity of the solvent.
Typical choicesof cosolvent are acetone, acetonitrile, and n-alkanols, and carbon dioxide mixtures
with these substances (for n-alkanols up to n-hexanol [36]) are known or expected to possess
continuous critical loci. There has been considerable recent interest in measuring VLE of carbon
dioxide with these cosolvents in the region supercritical to carbon dioxide; in some cases the



experimental results are presented as unsmoothed three-dimensional surfaces[37, 38]. It would be
useful to have an explicit mathematical expression for such surfaces, so it is useful to test Eq. (10)
for such apurpose. We notethat in previous studies of the Leung-Griffiths model [39], the presence
of polarity leads to more parameters or larger values of parameters than otherwise but does not
diminish the accuracy of the approach in correlation mode. We test the model here with the
cosolvents acetone (T, = 508 K) and ethanol (T, = 514 K).

Figure 4 shows the comparison with our theoretical results and the isotherm at 313.15 K of
Katayamaet al. [40]. In contrast to the mixtures of the previous section, for this mixture there are
no coexisting density data and no VLE data for acetone-rich mixtures so the Leung-Griffiths
correlation is more speculative. Nevertheless, as optimized by simplex methods[41, 42], it agrees
with the limited data quite well.

As shown, Eq. (10) for thisisotherm follows the Leung-Griffiths model down about to the
carbon dioxide critical pressure before diverging. We can improve the agreement with experiment
significantly by adding aterm B A P* to Eq. 10, which gives curvature to the diameter, as shown
in Fig. 4 with the choice B = 0.009 MPa®. Thisterm also prevents, in this case, the unphysical
result, possible from the original Eq. 10, that x < 0. Unfortunately, the phase boundary surfaceis
no longer determined from the solvent properties and critical locus, in that adjustable parameter B,
in general temperature-dependent, must be added. Inthiscase, it isan inescapable conclusion from
the data that the diameter isnot linear. Nevertheless, EQ. (10) describes most of the properties of
the isotherm.

Equation (10) provides amuch poorer description of carbon dioxide + ethanol, as shownin
Fig. 5. We have been unable to construct a successful Leung-Griffiths model for this mixture.
Fig. 5 shows the experimental isotherms of Lim et a. [43] at 308.15 K and the predictions of
Eq. (10).

One difficulty, as noted previoudly for carbon dioxide + methanol [10], is an inconsistency
between VLE experiments and direct measurements of the critical locus. Figure 5 shows critical
loci as optimized to that of Gurdia et al.[44] and asinferred from the dataof Lim et a. [43]. These
separate loci are in good agreement in P-x space, but not in P-T space. The isotherm determined
from Eq. 10 and the former critical locus has a critical point inconsistent with the VLE dataand is

extremely narrow compared with experiment. Here the slopes dP/dT of the solvent vapor pressure



curve and the critical locus are quite close, so thereis alarge sensitivity of Eq. 10 to variationsin
the critical locus.

Theisotherm determined from Eq. 10 and thelatter critical locusismuch wider thanthefirst
theoretical curve, but still much narrower than the experimental curve. Previous studies [16,23]
have shown that the "amplitude" of the phase boundary curves are closely related to the properties
of the solvent vapor pressure curve and critical locuswhilethe diametersmay not be, but inthiscase
the theory breaks down for the amplitudes as well. There is some clear scatter in the data on the
vapor side, and the smoothed data might be described with the mathematical form of Eq. 10 with
aquadratic term, but with coefficients that would be adjustable parameters. We can only speculate
on the apparent failure of our approach for this mixture. While carbon dioxide + ethanol is
generally regarded to be Type 1 in the nomenclature of Van Konynenburg and Scott [46] (Class 1°
in the recently proposed nomenclature of Bolz et al.[47], it may be near P atransition to Type 5 of
Van Konynenburg and Scott ( Class 27 of Bolz et al.). In thistransition, the critical locus changes
from continuous to a locus broken by a three-phase, liquid-liquid-vapor locus. Proximity to such
atransition may introduceadifferent typeof fluctuation, the predominantly composition flucuations
of liquid-liquid equilibrium in addition to the predominantly density fluctuations of vapor-liquid
equilibrium, and the assumptions of the theory may break down. To resolve this issue, further
investigation is needed, perhaps in conjunction with classical equations of state which work
somewhat better in this regime for the present mixture.
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FIGURE CAPTIONS

Figure 1. Schematic pressure-temperature diagram of a near-critical dilute solution, linearized.
Solid line, vapor pressure locus of solvent; dotted line; critical locus; broken line, isotherm; dashed
line, locus of constant zeta.

Figure 2. Pressure-composition diagram for dilute ethane in methane. Experimental data and
temperatures asindicated. Critical locus, broken line; solid lines, asymptotic formula; dotted lines,
Leung-Griffiths model; dashed lines, diameters of isotherms.

Figure 3. Pressure-composition diagram for dilute methane in nitrogen. Experimental data and
temperatures as indicated. Linetypes same as Fig. 2.

Figure 4. Pressure-composition diagram for dilute acetone in carbon dioxide. Experimental data,
inverted triangles (Ref. 40, 313.15 K). Linetypes same as Fig 2. except solid line, origina
asymptotic formula and diameter; dashed line, modified asymptotic formula and diameter with
guadratic term in diameter.

Figure5. Pressure-composition diagram for dilute ethanol in carbon dioxide. Experimental critical
points, empty circles Ref. 44, empty triangles Ref. 45. Filled circles, VLE data at 308.15 K.
Broken line, critical locus optimized to measured critical points, with critical point C1 at 308.15 K.
Dotted line, critical locus optimized to VLE, with critical point C2 at 308.15 K. Solid lines,
respective asymptotic formularesults, dashed lines, respective diameters.
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